8 research outputs found

    White Matter Development in Early Puberty: A Longitudinal Volumetric and Diffusion Tensor Imaging Twin Study

    Get PDF
    White matter microstructure and volume show synchronous developmental patterns in children. White matter volume increases considerably during development. Fractional anisotropy, a measure for white matter microstructural directionality, also increases with age. Development of white matter volume and development of white matter microstructure seem to go hand in hand. The extent to which the same or different genetic and/or environmental factors drive these two aspects of white matter maturation is currently unknown. We mapped changes in white matter volume, surface area and diffusion parameters in mono- and dizygotic twins who were scanned at age 9 (203 individuals) and again at age 12 (126 individuals). Over the three-year interval, white matter volume (+6.0%) and surface area (+1.7%) increased, fiber bundles expanded (most pronounced in the left arcuate fasciculus and splenium), and fractional anisotropy increased (+3.0%). Genes influenced white matter volume (heritability ∼85%), surface area (∼85%), and fractional anisotropy (locally 7% to 50%) at both ages. Finally, volumetric white matter growth was negatively correlated with fractional anisotropy increase (r = –0.62) and this relationship was driven by environmental factors. In children who showed the most pronounced white matter growth, fractional anisotropy increased the least and vice-versa. Thus, white matter development in childhood may reflect a process of both expansion and fiber optimization

    DNA evidence for strong genetic stability and increasing heritability of intelligence from age 7 to 12

    Get PDF
    Two genetic findings from twin research have far-reaching implications for understanding individual differences in the development of brain function as indexed by general cognitive ability (g, aka intelligence): (1) The same genes affect g throughout development, even though (2) heritability increases. It is now possible to test these hypotheses using DNA alone. From 1.7 million DNA markers and g scores at ages 7 and 12 on 2875 children, the DNA genetic correlation from age 7 to 12 was 0.73, highly similar to the genetic correlation of 0.75 estimated from 6702 pairs of twins from the same sample. DNA-estimated heritabilities increased from 0.26 at age 7 to 0.45 at age 12; twin-estimated heritabilities also increased from 0.35 to 0.48. These DNA results confirm the results of twin studies indicating strong genetic stability but increasing heritability for g, despite mean changes in brain structure and function from childhood to adolescence

    The Role and Sources of Individual Differences in Critical-Analytic Thinking: a Capsule Overview

    No full text
    corecore